Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Corrosion of metal fasteners embedded in acetylated and untreated wood at different moisture contents

Source: Wood Material Science & Engineering. 15(4): 182-189.

Author(s)Zelinka, Samuel L.; Passarini, Leandro

Publication Year: 2020  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4716-1A

Abstract: Acetylated wood is now commercially available and designed to be used in certain outdoor applications as an alternative to preservative-treated wood. Fastener corrosion can be a concern in preservative treated wood when the wood remains wet for long periods. However, little data on the corrosiveness of acetylated wood exists beyond the product literature. Here we examine the corrosiveness of commercially obtained acetylated wood and compare it against unmodified (untreated) southern pine (Pinus spp.). Corrosion rates of plain carbon steel, hot dip galvanized steel, and stainless steel were calculated gravimetrically after a one year exposed in the wood. Four different moisture conditions were examined: 90% relative humidity (RH), 95% RH, 100% RH, and a fully water saturated condition. When compared to literature data on the corrosion of fasteners in preservative treated wood at 100% RH, the acetylated wood had much lower steel corrosion rates than all preservatives examined; the measured corrosion rates for galvanized steel were lower than all preservatives except chromated copper arsenate. These measured corrosion rates across a range of moisture conditions can be used to inform the selection of appropriate corrosion resistant fasteners when building with acetylated wood.

Keywords: Wood modification; fastener corrosion; acetylated wood; moisture dependent wood properties

Publication Review Process: Formally Refereed

File size: 1,024 kb(s)

Date posted: 09/23/2020

This publication is also viewable on Treesearch:  view
RITS Product ID: 99398
Current FPL Scientist associated with this product
Zelinka, Samuel L.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »