Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Timber species identification from chemical fingerprints using direct analysis in real time (DART) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS): comparison of wood samples subjected to different treatments

Source: Holzforschung. 73(11): 975-985.

Author(s)Zhang, Maomao ; Zhao, Guangjie ; Guo, Juan ; Wiedenhoeft, Alex C.; Liu, Charles C.; Yin, Yafang

Publication Year: 2019  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4715-3


Timber genus identification based on the anatomical features of wood is well established in botany. However, species-level wood identification is not always possible based on traditional wood morphology techniques alone. To compensate for the deficiencies of traditional methods, direct analysis in real time coupled to Fourier transform ion cyclotron resonance mass spectrometry (DART-FTICR-MS) was used to obtain the mass spectral fingerprints of different timber species. Using heartwood samples of two morphologically similar species, Pterocarpus santalinus and Pterocarpus tinctorius, subjected to different treatments, i.e. solvent extractions and powdered samples as well as air-dried samples and samples dried at low and high temperatures, we observed distinct chemical signatures for the wood samples from the two species, enabling rapid species-level identification when multivariate statistical analysis was adopted.

The supervised orthogonal partial least squares discriminant analysis (OPLS-DA) models for samples subjected to different treatments all exhibited accurate differentiation performance of the explained fraction of variance of classes (R2Y = 0.9360.987) and the cross-validated fraction of variance of classes (Q2 = 0.8570.949). Compared with solvent types and the physical form of the sample, the drying treatment method had a greater impact on the chemical fingerprint from DART-FTICR-MS. Air-dried wood chips were the optimal samples for the DART-FTICR-MS method coupled with statistical analysis.

Keywords: air-dried wood chips; DART-FTICR-MS; metabolomics analysis; OPLS-DA; species-level wood identification

Publication Review Process: Formally Refereed

File size: 878 kb(s)

Date posted: 12/09/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 96694
Current FPL Scientist associated with this product
Wiedenhoeft, Alex C.
Research Botanist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »