Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Assessing internal soundness of hardwood logs through acoustic impact test and waveform analysis

Source: Wood Science and Technology. 53(5): 1111-1134

Author(s)Xu, Feng ; Liu, Yunfei ; Wang, Xiping ; Brashaw, Brian K.; Yeary, Lon A.; Ross, Robert J.

Publication Year: 2019  View PDF »

Category: Journal Articles

Abstract: The objective of this study was to explore the potential of an acoustic impact test as a nondestructive evaluation procedure to assess the soundness of hardwood logs in terms of internal decay, void, and defect ratio. Fifteen logs of four hardwood species (black cherry, white oak, red oak, and cottonwood) were obtained and subjected to acoustic impact testing. The logs were subsequently dissected for visual examination and physical mapping of the internal defects. The acoustic response signals were analyzed to derive acoustic velocity (through FFT), time centroid (through moment analysis), and the frst- and second-order damping ratio (through continuous wavelet transform). The longitudinal acoustic velocity was found to have a negative, non-linear relationship with defect ratio (R2 = 0.72), but it lacked sensitivity to small defects and was afected by species. Time centroid proved to be a better predictor than acoustic velocity with an improved correlation with log defect ratio (R2 = 0.87). Wavelet-based damping ratio was found to have a close linear relationship with log defect ratio. Comparing with the frst-order damping ratio, the second-order damping ratio had a better predicting power (R2 = 0.92) and was not afected by type and location of defects. The results further indicated that a combination of acoustic velocity, time centroid, and the frst- and second-order damping ratios could yield the optimal prediction of log defect ratio. However, considering the sensitivity and simplicity of the waveform analysis, the second-order damping ratio of the response signals could be the best single predicting parameter for assessing the internal soundness of hardwood logs.

Keywords: longitudinal acoustic velocity; time centroid; damping ratio; defect ratio; hardwood logs; wavelet transform; wood quality

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 11/20/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 96628
Current FPL Scientists associated with this product (listed alphabetically)
Ross, Robert J.
Supervisory Research Gen. Engineer
Wang, Xiping
Research Forest Products Technologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »