Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Bonding performance of adhesive systems for cross-laminated timber treated with micronized copper azole type C (MCA-C)

Source: Construction and Building Materials. 232. 10 p.

Author(s)Lim, Hyungsuk ; Tripathi, Sachin ; Tang, Juliet D.

Publication Year: 2020  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4723-3A

Abstract: The feasibility of manufacturing cross-laminated timber (CLT) from southern yellow pine (United States grown) treated with micronized copper azole type C (MCA-C) preservative was evaluated. Lumber (2x6 visually graded no. 2 boards) was treated to two retention levels (1.0 and 2.4 kg/m3 ), planed to a thickness of 35 mm, and assembled along with an untreated control group using three adhesive systems following product specifications: melamine formaldehyde (MF), resorcinol formaldehyde (RF), and one-component polyurethane (PUR). Block shear and delamination tests were conducted to examine the bonding performance in accordance with ASTM D905 and ASTM D2559 Standards, respectively. One-way analysis of variance and Kruskal-Wallis H test were conducted to evaluate the effects of preservative retention and adhesive type on block shear strength (BSS) and wood failure percentage (WFP). Regardless of adhesive type, the 1.0 kg/m3 retention treatment significantly lowered BSS compared to the untreated control. CLT composed of the laminations treated at 2.4 kg/m3 maintained BSS when PUR and RF were used but not MF. The average WFP of each CLT configuration ranged from 89% to 99%. The untreated CLT specimens did not experience any delamination under accelerated weathering cycles. The delamination rates of the treated specimens assembled using MF and RF increased with the preservative retention level, while PUR provided delamination rates less than 1% to the laminations treated at both levels. These combined data suggest that, under the conditions tested, PUR provided overall better bonding performance than MF and RF for MCA-C treated wood.

Keywords: Treated CLT; MCA-C; block shear; delamination; bonding performance

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 11/05/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 96594
Current FPL Scientist associated with this product
Tang, Juliet
Research Forest Products Technologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »