Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Dispersing and stabilizing cellulose nanoparticles in acrylic resin dispersions with unreduced transparency and changed rheological property

Source: Cellulose. 25(4): 2435-2450.

Author(s)Du, Lanxing ; Zhong, Tuhua ; Wolcott, Michael P.; Zhang, Yang ; Qi, Chusheng ; Zhao, Boshi ; Wang, Jinwu ; Yu, Zhiming

Publication Year: 2018  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-2B

Abstract: This paper evaluates the potential of using 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanoparticles (T-CNPs) as additives to tune the rheology of water-based acrylic resin (AR) coatings for flexible packaging applications. Three T-CNPs of T-CNF, T-MCC, and T-CNC were prepared from three starting cellulosic materials: cellulose nanofibers (CNF), microcrystalline cellulose (MCC), and cellulose nanocrystals (CNC), respectively. Their sizes ranged from 20 nm to 20 lmin diameter, and 234 nm to over 500 nm in length. The oxidation imparted carboxyl groups on the surfaces of nanoparticles ranging from 1.99 to 2.79 mmol/g and increased the zeta-potentials of the nanoparticles, clearly improving the dispersibility and stability of the CNPs in AR. The AR/T-CNP dispersion showed unreduced transparency. The morphologies of the T-CNPs affected the rheological properties of the AR/ T-CNP dispersions. The larger aspect ratio of T-CNF and T-MCC resulted in the high viscosity and solid-like viscoelastic behavior of the AR/nanoparticle dispersions at a concentration of 0.78 wt%. The CNC and T-CNC with a smaller particle size and aspect ratio had less effect on the viscosity and rheological behavior of the resulting dispersions compared with the others—even at a high content of 1.30 wt%. Due to a lower aspect ratio but a relatively large particle size, the AR/T-MCC dispersions exhibited elastic gel-like rheological properties at a low content.

Keywords: Cellulose nanoparticles; TEMPO-oxidation; acrylic resin; aspect ratio; transparency; rheological property

Publication Review Process: Formally Refereed

File size: 3,072 kb(s)

Date posted: 10/02/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 96431
Current FPL Scientist associated with this product
Wang, Jinwu
Research Forest Products Technologist
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »