Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: PHBV-graft-GMA via reactive extrusion and its use in PHBV/nanocellulose crystal composites

Source: Carbohydrate Polymers. 205: 27-34.

Author(s)Zheng, Ting ; Zhang, Zhan ; Shukla, Srishti ; Agnihotri, Shubh ; Clemons, Craig M.; Pilla, Srikanth

Publication Year: 2019  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-1B

Abstract: Reactive extrusion was used for dicumyl peroxide (DCP)-initiated grafting of glycidyl methacrylate (GMA) to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The effects of GMA and DCP content and their weight ratio on the GMA grafting percentage (GP%), the polymer melt viscosity, and the PHBV molecular weight were investigated. FTIR spectroscopy determined that the DCP did indeed initiate GMA grafting. However, the changes in both the zero-shear viscosity (η0) and the molecular weight suggested the existence of crosslinking products in the extruded polymers. A negative correlation between the degree of crystallinity (χc) of the PHBV-g-GMA and the GP% suggested the influence of chain branching on crystallinity. In addition, the GMA content was found as a key factor determining the GP%. The PHBV-g-GMA was used as a matrix polymer in cellulose nanocomposites to evaluate its effects on CNC dispersion and CNC-matrix adhesion relative to the unmodified PHBV matrix. The SEM images and the change in crystallization temperature suggested enhanced dispersion of CNC in a PHBV-g-GMA matrix. However, little increase in strength properties were found with CNC addition suggesting inadequate stress transfer between the matrix and CNCs.

Keywords: PHBV; cellulose nanocrystal; extrusion; injection molding; nanocomposite

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 09/27/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 95935
Current FPL Scientist associated with this product
Clemons, Craig M.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »