Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Wet-stacking lamination of multilayer mechanically fibrillated cellulose nanofibril (CNF) sheets with increased mechanical performance for use in high-strength and lightweight structural and packaging applications

Source: ACS Applied Polymer Materials. 1(9): 2525-2534.

Author(s)El Awad Azrak, Sami M.; Clarkson, Caitlyn M.; Moon, Robert J.; Schueneman, Gregory T.; Youngblood, Jeffrey P.

Publication Year: 2019  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: Mechanically fibrillated cellulose nanofibril (CNF) sheets of varying thicknesses were fabricated by using a wet stacking lamination technique without the use of solvents other than water or binders. The use of this technique allowed for the creation of multilayer structures with a working area of 117 mm by 117 mm and thickness of up to 0.547 ± 0.03 mm in under 2 h, which represents the shortest total processing time reported for such thickness of CNF sheets. To highlight the capabilities of utilizing wet stacking, the thickest reported 100% pure multilayer CNF sheet with a thickness of 1.65 ± 0.02 mm was produced. To gauge the effect of processing parameters on the mechanical performance of the produced sheets, thickness (85−547 μm thick), pressing time (35 min, 1 h, and 2 h), pressing pressure (0−5.17 MPa), and loading rate (4 min, 2 min, and 20 s) were varied. Tensile testing results show that the ultimate strength increased as the thickness increased and subsequently reached a plateau at a value of 207 ± 2.51 MPa at a critical thickness between 85 ± 2 and 153 ± 4 μm. A slight decrease in ultimate strength to a value of 184 ± 10.9 MPa was seen for the thicker 547 μm (0.547 mm) specimens. The specific strength was comparable to 2024 aluminum (T3 tempered) due to the relatively low density of CNF. The apparent toughness (work of failure) of the sheets was found to be on average 3.53 ± 0.36 MJ/m3, which is about 6 times greater than the reported value for poly(styrene). Because of their improved mechanical properties, these sheets could serve in high-strength and low-density structural applications where aluminum alloys (2024 and 6061) and packing materials/containers where commodity polymers like poly(styrene) are currently used.

Keywords: Nanocellulose; wet stacking; CNF lamination; CNF sheets; CNF laminate

Publication Review Process: Formally Refereed

File size: 5,120 kb(s)

Date posted: 09/26/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 95848
Current FPL Scientists associated with this product (listed alphabetically)
Moon, Robert J.
Materials Research Engineer
Schueneman, Gregory
Supervisory Research Materials Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »