Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Variations in orthotropic elastic constants of green Chinese larch from pith to sapwood

Source: Forests. 10(5). 16 p.

Author(s)Liu, Fenglu ; Zhang, Houjiang ; Jiang, Fang ; Wang, Xiping ; Guan, Cheng

Publication Year: 2019  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4714-1B

Abstract: Full sets of elastic constants of green Chinese larch (Larix principis-rupprechtii Mayr) with 95% moisture content at four different cross-section sampling positions (from pith to sapwood) were determined in this work using three-point bending and compression tests. Variations in the material constants of green Chinese larch from pith to sapwood were investigated and analyzed. The results showed that the sensitivity of each elastic constant to the sampling position was different, and the coefficient of variation ranged from 4.3% to 48.7%. The Poisson’s ratios νRT measured at four different sampling positions were similar and the differences between them were not signifcant. The coefficient of variation for Poisson’s ratio νRT was only 4.3%. The four sampling positions had similar Poisson’s ratios νTL, though the coefficient of variation was 11.7%. The Poisson’s ratio νLT had the greatest variation in all elastic constants with a 48.7% coefficient of variation. A good linear relationship was observed between the longitudinal modulus of elastic EL, shear modulus of elasticity GRT, Poisson’s ratio νRT, and sampling distance. EL, GRT, and νRT all increased with sampling distance R. However, a quadratic relationship existed with the tangential modulus of elasticity ET, radial modulus of elasticity ER, shear modulus of elasticity GLT, and shear modulus of elasticity GLR. A discrete relationship was found in the other fve Poisson’s ratios. The results of this study provide the factual changes in the elastic constants of green wood from pith to sapwood for numerical modelling of stress wave propagation in trees or logs

Keywords: Orthotropic; elastic constants; green larch; compression; three-point bending

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 09/13/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 95188
Current FPL Scientist associated with this product
Wang, Xiping
Research Forest Products Technologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »