Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Printing and mechanical characterization of cellulose nanofibril materials

Source: Cellulose. 26(4): 2639-2651.

Author(s)Mariani, Lisa M.; Johnson, William R.; Considine, John M.; Turner, Kevin T.

Publication Year: 2019  View PDF »

Category: Journal Articles

Abstract: Cellulose nanofibrils (CNF) are a promising building block of structural materials because they are biodegradable, can be made into optically transparent bulk materials, and have exceptional specific strength and stiffness compared to common synthetic polymers. The manufacturing of bulk materials from CNFs is a challenge because CNFs form networks in solution at low solids concentration, which can result in long processing times as well as large residual stresses and distortion upon water removal. Here, a method to form materials from CNF suspensions via direct ink writing, a type of additive manufacturing, is demonstrated. Multilayer printing of CNFs provides a route to control drying time by depositing thin layers one at a time. A printing system with a pressure-controlled dispensing system was used to deposit aqueous CNF suspensions onto a temperature- controlled substrate. The geometry, roughness, and mechanical properties of the printed structures were characterized. The shape of the printed line profile is controlled by a combination of the wettability of the substrate, dispense rate, printing speed, and temperature of the substrate. Spatial variation of the elastic modulus of printed CNF structures was assessed with nanoindentation and the average percent difference was found to be small at ± 2.6% of the mean over the area of the printed lines. Through multilayer printing freestanding films with thicknesses greater than 60 lm were achieved. Tensile specimens were printed and characterized; a tensile strength of 72.6 MPa ± 7.4 MPa and a Young’s modulus of 10.2 GPa ± 1.2 GPa were measured.

Keywords: Nanocellulose; cellulose nanofibrils; nanofibrillated cellulose; printing; additive manufacturing; mechanical properties

Publication Review Process: Formally Refereed

File size: 1,024 kb(s)

Date posted: 09/04/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 94874
Current FPL Scientist associated with this product
Considine, John M.
Materials Research Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »