Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: The parallel exponential kinetics model is unfit to characterize moisture sorption kinetics in cellulosic materials

Source: Cellulose. 26(2): 723-735.

Author(s)Thybring, Emil E.; Boardman, Charles R.; Glass, Samuel V; Zelinka, Samuel L.

Publication Year: 2019  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4716-3A

Abstract: Sorption of water vapor in cellulosic materials has been studied for more than 100 years. However, the last 2 decades have seen a surge in studies of sorption kinetics due to the adoption of automated sorption balances in laboratories world-wide. Sorption kinetic data is commonly fitted with the parallel exponential kinetics (PEK) model, which is the sum of two exponential functions. The PEK model parameters are often interpreted as representing phys-ical quantities or material properties, but their exact definition remains undetermined. Nonetheless, PEK fitting of sorption data has been widely used to identify various physical properties. Recent work has called into question the protocols used to collect sorption data with automated sorption balances and the meth-ods used to analyze the data. Typically, data acquisi-tion is interrupted before equilibrium when the rate of mass change fulfills a user-specified criterion, and this has been shown to severely mischaracterize both the equilibrium moisture content and the full kinetic behavior. The objective of this work is to examine whether interrupting data acquisition before equilib-rium affects the PEK model parameters and further explore whether PEK model interpretations have physical significance as claimed in the literature. The analysis shows that the PEK model cannot capture the actual form of the sorption curves for loblolly pine and microcrystalline cellulose across a range of relative humidity (RH) steps in both absorption and desorp-tion. PEK model parameters depend not only on the mass stability criterion that controls the measurement hold time, but also on the RH step making even qualitative comparisons of a single sample across different RH steps meaningless. The PEK model cannot be used to derive physically meaningful properties from water vapor sorption measurements and its use as a tool for exploring the properties of cellulosic materials interacting with water is not recommended.

Keywords: Dynamic vapor sorption; parallel exponential kinetics model; wood–moisture relations; water vapor sorption; multi-exponential decay analysis; MEDEA

Publication Review Process: Formally Refereed

File size: 1,024 kb(s)

Date posted: 04/11/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 93908
Current FPL Scientists associated with this product (listed alphabetically)
Glass, Samuel V.
Research Physical Scientist
Zelinka, Samuel L.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »