Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Developing seismic performance factors for cross laminated timber in the United States

Source: In: Proceedings, the 11th Canadian conference on earthquake engineering. Vancouver, BC: Canadian Association for Earthquake Engineering: 1-10.

Author(s)van de Lindt, John ; Amini, M. Omar; Rammer, Doug ; Line, Philip ; Pei, Shiling ; Popovski, Marjan

Publication Year: 2016  View PDF »

Category: Conference Proceedings

Abstract: This paper presents recent progress in the development of seismic performance factors for cross-laminated timber (CLT) systems in the United States. A brief overview of some of other systematic studies conducted in Europe, North America, and Japan is also provided. The FEMA P695 methodology is briefly described and selected results from connector testing and CLT wall testing are discussed. Shear and uplift tests were performed on generic angle brackets to quantify their behavior. CLT walls with these connectors were then tested investigate the influence of various parameters on wall component performance. The influential factors considered include boundary condition, gravity loading, CLT grade, panel thickness, and panel aspect ratio (height:length). Results indicate that boundary condition and gravity loading have beneficial effect on strength and stiffness of the CLT panels. CLT grade is an important parameter while CLT panel thickness only has a minimal influence on wall behavior. Higher aspect ratio (4:1) panels demonstrated less stiffness but considerably more ductility than the panels with lower aspect ratio (2:1). This paper also provides details on some on-going efforts including additional tests planned, index buildings from which P-695 archetypes will be extracted, and nonlinear modeling for this project.

Keywords: Cross laminated timber; P695; seismic; design

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 04/02/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 93852
Current FPL Scientist associated with this product
Rammer, Douglas R.
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »