Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Systematic experimental investigation to support the development of seismic performance factors for cross laminated timber shear wall systems

Source: Engineering Structures. 172: 392-404.

Author(s)Amini, M. Omar; van de Lindt, John W.; Rammer, Douglas ; Pei, Shiling ; Line, Philip ; Popovski, Marjan

Publication Year: 2018  View PDF »

Category: Journal Articles

Abstract: In the US, codified seismic design procedure requires the use of seismic performance factors which are currently not available for CLT shear wall systems. The study presented herein focuses on the determination of seismic design factors for CLT shear walls in platform type construction using the FEMA P-695 process. Results from the study will be proposed for implementation in the seismic design codes in the US. The project approach is outlined and selected results of full-scale shear wall testing are presented and discussed. Archetype development, which is required as part of the FEMA P-695 process, is briefly explained with an example. Quasi-static cyclic tests were conducted on CLT shear walls to systematically investigate the effects of various parameters. The key aspect of these tests is that they systematically investigate each potential modelling attribute that is judged within the FEMA P-695 uncertainty quantification process. Boundary constraints and gravity loading were both found to have a beneficial effect on the wall performance, i.e. higher strength and deformation capacity. Higher aspect ratio panels (4:1) demonstrated lower stiffness and substantially larger deformation capacity compared to moderate aspect ratio panels (2:1). However, based on the test results there is likely a lower bound for aspect ratio (at 2:1) where it ceases to benefit deformation capacity of the wall. This is due to the transition of the wall behaviour from rocking to sliding. Phenomenological models were used in modelling CLT shear walls. Archetype selection and analysis procedure was demonstrated and nonlinear time history analysis was conducted using different wall configurations.

Keywords: Cross-laminated timber (CLT); seismic performance factors; experimental wood testing; FEMA P695 methodology

Publication Review Process: Formally Refereed

File size: 5,120 kb(s)

Date posted: 03/12/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 93756
Current FPL Scientist associated with this product
Rammer, Douglas R.
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »