Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Moisture monitoring of wood-frame walls with and without exterior insulation in the Midwestern U.S

Source: In: Proceedings, 7th international building physics conference. Syracuse, NY: 163-168.

Author(s)Glass, Samuel V; Boardman, C.R. ; Yeh, Borjen ; Chow, Kingston

Publication Year: 2018  View PDF »

Category: Conference Proceedings

Abstract: Continuous exterior insulation is becoming more common in North American above -grade walls in both retrofit applications and new construction, as a means to improve the thermal performance of wall assemblies. Although moisture performance of wood-frame wall assemblies has been studied extensively, the drying capability of wall assemblies with exterior insulation and an interior vapor retarder in cold climates is not well characterized. This study monitored the hygrothermal performance of wall assemblies with and without exterior insulation under high and low interior humidity conditions and with intentional wetting of the wood structural panel sheathing. Moisture content and temperature of standard 38 mm x 140 mm wood framing and 11 mm thick oriented strand board (OSB) sheathing were measured over a two-year period in eight different wall assemblies, each with north or south orientation, in a conditioned test structure in Madison, Wisconsin. Wall configurations differed primarily in the interior vapor retarder (kraft paper or polyethylene film) and the exterior insulation (none, expanded polystyrene, extruded polystyrene, or mineral wool). OSB sheathing was wetted in a controlled manner at three different times of year to investigate drying response. Wintertime moisture accumulation in OSB in the tested climate zone was not a concern except in the wall with no exterior insulation and interior kraft vapor retarder, though rapid drying occurred in springtime. Drying of OSB after controlled wetting events was generally faster during warm weather than cold weather; faster with exterior insulation than without during cold weather; faster with vapor-open exterior insulation than low-permeance exterior insulation during cold weather; and faster with interior kraft vapor retarder than polyethylene.

Keywords: moisture performance; hygrothermal performance; continuous insulation; building envelope; durability

Publication Review Process: Formally Refereed

File size: 635 kb(s)

Date posted: 03/06/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 93725
Current FPL Scientist associated with this product
Glass, Samuel V.
Research Physical Scientist
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »