Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Assessing multi-scale deconstruction of wood cell wall subjected to mechanical milling for enhancing enzymatic hydrolysis

Source: Industrial Crops and Products. 109: 498-508.

Author(s)Jiang, Jinxue ; Wang, Jinwu ; Zhang, Xiao ; Wolcott, Michael

Publication Year: 2017  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-1B

Abstract: The hierarchical structure of wood cell walls resulting from complex arrangement and distribution of the heterogeneous components is considered to impact significant impediment to enzymatic hydrolysis of cellulose for biofuels. In this work, micronized wood with significant cell wall ultrastructural deconstruction were effectively produced from ring and puck milling within 12 min. In a subsequent enzymatic hydrolysis, micronized wood resulted in increase of cellulose hydrolysability by 4–14 folds over that of starting material. The underlying mechanism towards facilitating enzymatic hydrolysis was studied through delineating the ultrastructural changes and alternation of cellulose chemistry in micronized wood cell wall using SEM, TEM, CLSM, GPC, XRD, HPLC and Simon’s staining techniques. Electronic microscopy revealed distinct stages of wood cell wall deconstruction that was coincident with particle size reduction, including cell fracture and delamination, cell wall disintegration, and amorphization of cell wall fragments. Simons’ staining results also indicated increasing substrate accessibility and porosity of micronized wood, likely due to the ultrastructure alternation of cell walls. GPC and XRD revealed significant decrease of cellulose degree of polymerization (DP) and crystallinity. The correlation of these factors with cellulose hydrolysability was studied and further arranged in order through principal component analysis. The major positive factors affecting hydrolysability were surface accessibility and porosity, while cellulose crystallinity and DP were the major negative factors accompanied by particle size. The established weighed order of factors behind hydrolysability provides insights of lowering cell wall structural recalcitrance by mechanical manner.

Keywords: Mechanical pretreatment; cell wall ultrastructure; cellulose structure; accessibility; enzymatic hydrolysis; principal component analysis

Publication Review Process: Formally Refereed

File size: 5,120 kb(s)

Date posted: 02/22/2019

This publication is also viewable on Treesearch:  view
RITS Product ID: 93582
Current FPL Scientist associated with this product
Wang, Jinwu
Research Forest Products Technologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »