Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Performance of wood adhesive for cross laminated timber under elevated temperatures

Source: In: Proceedings, WCTE 2018-world conference on timber engineering. Seoul, Republic of Korea: Korean Institute of Forest Science. 7 p.

Author(s)Zelinka, Samuel ; Pei, Shiling ; Bechle, Nathan ; Sullivan, Kenneth ; Ottum, Noah ; Rammer, Douglas ; Hasburgh, Laura , E..

Publication Year: 2018  View PDF »

Category: Conference Proceedings
Associated Research Project(s):   FPL-4714-2B   FPL-4716-2A

Abstract: The increasing use of cross laminated timber (CLT) panels in large multi-story buildings has highlighted the structural performance of CLT in fire as a critical issue concerning life safety and serviceability. It is well-known that wood material strength decreases when exposed to elevated temperature for an extended period of time. For CLT panels, another level of complexity lies in the mechanical properties of the glued interface under high temperature. In this study, the tensile strength of typical North American wood species and shear strength of the glued interface of commonly used adhesives in CLT production were evaluated at different levels of elevated temperatures. The researchers systematically tested glue interface and wood samples in a controlled temperature chamber and obtained the load-deformation curves of the specimens until failure was observed. A total of five temperature levels were tested, with three wood species and four wood adhesive types. The glued interface strength was also compared to wood material strength itself under different temperatures. For each test, multiple samples were tested to ensure statistical significance of the results. The ultimate objective of this study is to develop a mechanistic model for CLT panels that can take into account the effect of temperature. In this paper, only the design, execution, and results from the elevated temperature tests are presented.

Keywords: Elevated temperature; fire performance; wood adhesive; cross laminated timber; mechanical strength

Publication Review Process: Informally Refereed (Peer-Reviewed)

File size: 576 kb(s)

Date posted: 09/28/2018

This publication is also viewable on Treesearch:  view
RITS Product ID: 92703
Current FPL Scientists associated with this product (listed alphabetically)
Rammer, Douglas R.
Research General Engineer
Zelinka, Samuel L.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »