Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Experimental investigation of the influence of temperature on thermal conductivity of multilayer reflective thermal insulation

Source: Energy and Buildings. 174: 26-30.

Author(s)Pásztory, Zoltán ; Horváth, Tibor ; Glass, Samuel V; Zelinka, Samuel

Publication Year: 2018  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4716-1A

Abstract: The apparent thermal conductivity of several insulation materials was measured over a range of temper- atures. A newly developed multilayer reflective insulation system called Mirrorpanel was tested against existing products. Mirrorpanel samples were prepared using layers of aluminum foil (emissivity of 0.11) and coated paper (emissivity of 0.52) separated by air spaces of approximately 5 mm, with fiberboard structural spacers. Steady-state heat flux was measured in the laboratory for 500 mm ×500 mm samples including several Mirrorpanel configurations as well as expanded polystyrene and polyisocyanurate foam insulations. The mean temperature ranged between 0 °C and 35 °C with a temperature difference across the sample of 10 °C. For all insulation materials, the apparent thermal conductivity increased linearly with temperature above 5 °C, and the slope was steeper for the Mirrorpanel samples than the foam insulations. The apparent thermal conductivity of the Mirrorpanel made from aluminum foil was greater than that of polyisocyanurate but less than that of expanded polystyrene. The significant difference of thermal conductivity of lower and higher emissivity reflecting layers highlighted the importance of this parameter in thermal insulation. The steep temperature dependence of the Mirrorpanel should be considered during design of the building envelope for summer and winter conditions.

Keywords: Thermal insulation; heat reflectance; thermal conductivity; temperature dependence

Publication Review Process: Formally Refereed

File size: 1,024 kb(s)

Date posted: 09/10/2018

This publication is also viewable on Treesearch:  view
RITS Product ID: 91743
Current FPL Scientists associated with this product (listed alphabetically)
Glass, Samuel V.
Research Physical Scientist
Zelinka, Samuel L.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »