Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Toughening epoxy composites using nano and microcellulose modifiers

Source: In: Proceedings, ECCM18-18th European conference on composite materials. 1-8.

Author(s)Deng, Xinying ; Kinloch, Anthony J.; Pimenta, Soraia ; Schueneman, Gregory T.; Sprenger, Stephan ; Taylor, Ambrose C.; Teo, Wern Sze.

Publication Year: 2018  View PDF »

Category: Conference Proceedings

Abstract: The fracture properties and toughening mechanisms of cellulose- and cellulose-rubber hybrid-modified epoxy polymers and glass-fibre (GF) composites are investigated. The cellulose modifiers used are microcrystalline cellulose (MCC) and cellulose nanocrystals (CNC), and the rubber modifiers are carboxyl-terminated butadiene-acrylonitrile (CTBN) and core-shell rubber (CSR). The toughening mechanisms of the MCC-epoxy and CNC-epoxy were identified to be crack deflection, shear band yielding, particle rupture or pull-out and debonding of the cellulose particles, which was followed by plastic void growth. An additive toughening effect is observed for the hybrid polymers. Analytical modelling of the fracture energies showed that the particle pull-out toughening contribution is negligible for CNC-epoxy, and the particle debonding and rupture toughening contributions are negligible for MCC-epoxy. The GF composites were manufactured using the wet-layup process. Cellulose modifiers did not increase the composite propagation fracture energy (GC,prop) but slight increases in GC,prop occurred for the CNC hybrids. Increases in the fibre-matrix adhesion reduced the fibre toughening mechanisms in the composites that were modified with only MCC or CNC. The crack tip deformation zone is smaller than the MCC particles, reducing their toughening ability in the GF composites.

Keywords: Cellulose; hybrid; fracture energy; glass-fibre composites; analytical modeling

Publication Review Process: Informally Refereed (Peer-Reviewed)

File size: 729 kb(s)

Date posted: 09/10/2018

This publication is also viewable on Treesearch:  view
RITS Product ID: 91740
Current FPL Scientist associated with this product
Schueneman, Gregory
Supervisory Research Materials Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »