Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Moisture and oxygen barrier properties of cellulose nanomaterial-based films

Source: ACS Sustainable Chemistry & Engineering. 6(1): 49-70.

Author(s)Wang, Jinwu ; Gardner, Douglas J.; Stark, Nicole M.; Bousfield, Douglas W.; Tajvidi, Mehdi ; Cai, Zhiyong

Publication Year: 2018  View PDF »

Category: Journal Articles

Abstract: Applications of cellulose nanomaterials (CNMs) have attracted increasing attention in recent years. One conceivable path lies in their commercial applications for packaging, in which their barrier properties will play an important role in determining their competiveness with conventional materials. This review critically analyzes the performance of CNMs acting as a barrier against moisture and oxygen permeation in CNM films, CNM-coated polymers and papers, and CNM-reinforced polymer composites, gives some insights into remaining challenges, and brings an overall perspective of compositing CNMs with other materials to achieve balanced properties adequate for barrier packaging. In general, CNMs are a poor moisture barrier but excellent oxygen barrier in the dry state and are still good below 65% relative humidity. The addition of CNMs can improve the oxygen barrier of the resulting polymer composites; however, neat CNM coatings and films can afford better oxygen barrier properties than dispersed CNMs in coatings and nanocomposites. The morphology and surface functionality of CNMs can be tailored to maximize the barrier performance of materials comprising them. The higher the surface charge density is of CNMs, the better is the barrier performance of coated polymers. Like other oxygen barriers such as ethylene vinyl alcohol and cellophane, the moisture sensitivity and sealability of CNMs can be improved by sandwiching them with high moisture-resistant and sealable polymers such as a polyolefin. A multilayered structure with layers of CNMs providing oxygen resistance covered by other layers of polymers providing moisture resistance and sealability might be competitive in barrier packaging markets dominated by synthetic plastics.

Keywords: CNMs; barrier; multilayer film; oxygen permeability; water vapor permeability; packaging

Publication Review Process: Formally Refereed

File size: 7,168 kb(s)

Date posted: 08/31/2018

This publication is also viewable on Treesearch:  view
RITS Product ID: 91568
Current FPL Scientists associated with this product (listed alphabetically)
Cai, Zhiyong
Supervisory Research Materials Engineer
Stark, Nicole M.
Research Chemical Engineer
Wang, Jinwu
Research Forest Products Technologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »