Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant

Source: Journal of Biological Chemistry. 293(13): 4702-4712.

Author(s)Houtman, Carl J.; Maligaspe, Eranda ; Hunt, Christopher G.; Fernández-Fueyo, Elena ; Martínez, Angel T.; Hammel, Kenneth E.

Publication Year: 2018  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-2B  FPL-4712-2B

Abstract: Peroxidases are considered essential agents of lignin degradation by white-rot basidiomycetes. However, low-molecularweight oxidants likely have a primary role in lignin breakdown because many of these fungi delignify wood before its porosity has sufficiently increased for enzymes to infiltrate. It has been proposed that lignin peroxidases (LPs, EC 1.11.1.14) fulfill this role by oxidizing the secreted fungal metabolite veratryl alcohol (VA) to its aryl cation radical (VA ), releasing it to act as a one-electron lignin oxidant within woody plant cell walls. Here, we attached the fluorescent oxidant sensor BODIPY 581/591 throughout beads with a nominal porosity of 6 kDa and assessed whether peroxidase-generated aryl cation radical systems could oxidize the beads. As positive control, we used the 1,2,4,5-tetramethoxybenzene (TMB) cation radical, generated fromTMBby horseradish peroxidase. This control oxidized the beads to depths that increased with the amount of oxidant supplied, ultimately resulting in completely oxidized beads. A reaction– diffusion computer model yielded oxidation profiles that were within the 95% confidence intervals for the data. By contrast, bead oxidation caused by VA and the LPA isozyme of Phanerochaete chrysosporium was confined to a shallow shell of LP-accessible volume at the bead surface, regardless of how much oxidant was supplied. This finding contrasted with the modeling results, which showed that if the LP/VA system were to release VA , it would oxidize the bead interiors. We conclude that LPA releases insignificant quantities of VA and that a different mechanism produces small ligninolytic oxidants during white rot.

Keywords: White rot fungus; lignin biodegradation; peroxidase; aryl cation radical

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 07/26/2018

This publication is also viewable on Treesearch:  view
RITS Product ID: 90728
Current FPL Scientists associated with this product (listed alphabetically)
Hammel, Kenneth E.
Research Chemist
Houtman, Carl J.
Chemical Engineer
Hunt, Christopher G.
Research Chemist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »