Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Analysis of improved criteria for mold growth in ASHRAE standard 160 by comparison with field observations

Source: In: Mukhopadhyaya, P; Fisler, D., eds. Advances in hygrothermal performance of building envelopes: materials, systems and simulations, ASTM STP1599. West Conshohocken, PA: ASTM International: 1-27.

Author(s)Glass, Samuel V.; Gatland II, Stanley D.; Ueno, Kohta; Schumacher, Christopher J.

Publication Year: 2017  View PDF »

Category: Book Chapter
Associated Research Project(s):   FPL-4716-1A

Abstract: ASHRAE Standard 160, Criteria for Moisture-Control Design Analysis in Buildings, was published in 2009. The standard sets criteria for moisture design loads, hygrothermal analysis methods, and satisfactory moisture performance of the building envelope. One of the evaluation criteria specifies conditions necessary to avoid mold growth. The current standard requires that the 30-day running average relative humidity at the material surface be less than 80 % when the 30-day running average surface temperature is between 5°C (41°F) and 40°C (104°F). This criterion was intended to strike a balance between the need for simplicity to make the standard useful and the complex reality of mold growth, which varies with mold species and depends on the type of material, water activity, temperature, and other factors. Since the standard was published, many practitioners have maintained that the mold criterion is too stringent. Assemblies known to have satisfactory performance in the field do not meet the criterion under hygrothermal simulation. A recent addendum to ASHRAE Standard 160 replaced the simplified mold criterion with a state-ofthe- art empirical model that describes mold growth and decline over time using a mold index. This model takes into account the sensitivity of the material, the surface temperature, and the surface relative humidity. This paper provides an overview of the mold index model and a series of comparisons between field observations of visible mold growth or lack thereof on woodbased sheathing and model predictions that use measured surface temperature and relative humidity values as inputs. The field data are from published studies on above-grade wood-frame wall assemblies and roof assemblies covering a range of climate zones. Our analysis indicates that the current 30-day criterion in ASHRAE Standard 160 fails many assemblies in which visible mold growth did not occur. In contrast, the mold index model predictions give better agreement with observations.

Keywords: Moisture control; building envelope; hygrothermal performance; hygrothermal analysis; simulation; mold growth; mold index; durability; failure criteria; ASHRAE Standard 160

Publication Review Process: Formally Refereed

File size: 1,024 kb(s)

Date posted: 12/12/2017

This publication is also viewable on Treesearch:  view
RITS Product ID: 89318
Current FPL Scientist associated with this product
Glass, Samuel V.
Research Physical Scientist
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »