Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood

Source: RSC Adv.6(105): 103026-103034.

Author(s)Jiang, Jinxue; Wang, Jinwu; Zhang, Xiao; Wolcott, Michael

Publication Year: 2016  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-2B

Abstract: Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized wood particles from mechanical milling pretreatment. We have also evaluated the energy efficiency of this processing method. Results indicate that the influence of processing variables on enzymatic hydrolysis of micronized wood relate mainly to the structural properties of particles. Reducing particle size down to ca. 30 μm disintegrates fibers and fiber bundles, while improving the enzymatic hydrolysis of the milled wood to around 40% of theoretical yield. Mechanically disintegrating the fiber cell wall into micronized fragments smaller than 30 μm further increases surface area and disrupts crystalline structure of cellulose, facilitating significant carbohydrate conversion (over 70% of theoretical yield). Empirical prediction of carbohydrate conversion with structural characteristics using a multiple linear regression model indicated that the enzymatic hydrolysis of micronized wood improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency results demonstrate that using a low-moisture content of the starting material and a multistep milling process decreases the energy required when producing simple sugars with a mechanical pretreatment. Findings from this study provide new insights for mechanically overcoming biomass recalcitrance and developing cost-effective milling technologies for industrial scale applications in biorefinery.

Keywords: Micronized wood; enzymatic hydrolysis; deconstruction; sugar yield

Publication Review Process: Formally Refereed

File size: 1,024 kb(s)

Date posted: 10/06/2017

This publication is also viewable on Treesearch:  view
RITS Product ID: 88695
Current FPL Scientist associated with this product
Wang, Jinwu
Research Forest Products Technologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »