Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Sensitivity analysis of hybrid thermoelastic techniques

Source: In: Quinn, S.; Balandraud, X., eds. Proceedings, society for experimental mechanics series. Residual stress, thermomechanics & infrared imaging, hybrid techniques and inverse problems, Volume 9: 29-36.

Author(s)Samad, W.A.; Considine, J.M.

Publication Year: 2017  View PDF »

Category: Conference Proceedings
Associated Research Project(s):   FPL-4709-4B

Abstract: Stress functions have been used as a complementary tool to support experimental techniques, such as thermoelastic stress analysis (TSA) and digital image correlation (DIC), in an effort to evaluate the complete and separate full-field stresses of loaded structures. The need for such coupling between experimental data and stress functions is due to the fact that experimental techniques offer discrete information of stresses or displacements, e.g. isopachic stresses in the case of TSA, as well as unreliable data near edges. For TSA, additional information is needed to separate stresses, as it is often necessary for fatigue analysis and a general better understanding of structural integrity. This separation is often accomplished by using an Airy stress function, which stems from compatibility and equilibrium conditions, and is frequently represented in the form of an indefinite series of coefficients. To date, only ad hoc estimates for the number of coefficients necessary for accurate representation of a loaded structure are used, with the estimates being influenced by quality of experimental data, experimental noise, and complexity of loading and boundary conditions. Information presented here attempts to systematize the selection of the Airy stress function’s indefinite series coefficients relative to experimental thermographic data.

Keywords: TSA; hybrid; sensitivity analysis; Airy stress function

Publication Review Process: Informally Refereed (Peer-Reviewed)

File size: 239 kb(s)

Date posted: 10/06/2017

This publication is also viewable on Treesearch:  view
RITS Product ID: 88519
Current FPL Scientist associated with this product
Considine, John M.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »