Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Experimental seismic behavior of a full-scale four-story soft-story wood-frame building with retrofits I: building design, retrofit methodology, and numerical validation

Source: Journal of Structural Engineering. 142(4): 1-14.

Author(s)Bahmani, Pouria; van de Lindt, John W.; Gershfeld, Mikhail; Mochizuki, Gary L.; Pryor, Steven E.; Rammer, Douglas

Publication Year: 2016  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4714-3B

Abstract: Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. There are tens of thousands of these multifamily three- and four-story structures throughout California and other parts of the United States. The majority were constructed between 1920 and 1970 and are prevalent in regions such as the San Francisco Bay Area in California. The NEES-Soft project was a five-university multiindustry effort that culminated in a series of full-scale soft-story wood-frame building tests to validate retrofit philosophies proposed by (1) Federal Emergency Management Agency’s recent soft-story seismic retrofit guideline for wood buildings and (2) a performance-based seismic retrofit (PBSR) approach developed as part of the NEES-Soft project. This paper is the first in a set of companion papers that presents the building design, retrofit objectives and designs, and full-scale shake table test results of a fourstory 370-m2 (4,000-ft2) soft-story test building. Four different retrofit designs were developed and tested at full scale, each with specified performance objectives, which were typically not the same. Three of these retrofits were stiffness or strength–based strategies and one applied supplemental damping devices in a pinned preassembled frame. This paper focuses on the building and retrofit design methodologies and specifics and the companion paper presents the experimental results of full-scale shake table tests ranging from 0.2- to 1.8-g spectral acceleration for all four retrofits.

Keywords: Performance-based seismic design; FEMA P-807; Soft-story; Wood frame; Shake table; Seismic retrofit; Wood structures

Publication Review Process: Formally Refereed

File size: 9,216 kb(s)

Date posted: 10/05/2017

This publication is also viewable on Treesearch:  view
RITS Product ID: 88088
Current FPL Scientist associated with this product
Rammer, Douglas R.
Research General Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »