Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Nanocomposites from lignin-containing cellulose nanocrystals and poly(lactic acid)

Source: In: Society of Plastic Engineers, ISBN: 978-0-692-88309-9: Paper prepared for: ANTEC® 2017. Anaheim, CA. 5 p.

Author(s)Wei, Liqing; Agarwal, Umesh; Stark, Nicole; Sabo, Ronald

Publication Year: 2017  View PDF »

Category: Conference Proceedings
Associated Research Project(s):   FPL-4706-2B  FPL-4709-2B

Abstract: Utilizing lignin-containing cellulose nanocrystals (HLCNCs) as reinforcing agents to poly(lactic acid) (PLA) for nanocomposites was studied for the first time. The PLA/HLCNCs nanocomposites were prepared by extrusion and injecting molding. The freeze-dried HLCNCs showed micron scale agglomerates. As indicated by the water contact angle measurements, the HLCNCs were more hydrophobic than dealkaline lignin and traditional, lignin-free CNCs derived from high cellulose content wood pulp. Thermogravimetric analysis (TGA) showed that the HLCNCs started to degrade at about 300°C. The thermal stability of nanocomposites was slightly lower than neat PLA. The Young’s modulus of nanocomposites containing 1%, 2% and 5% CNCs was improved by 21.0%, 18.4% and 17.7%, respectively, while the strain at break was improved by 73.2%, 63.4%, and 54.9% compared to neat PLA. The nanocomposites (PLA/2%HLCNC) exhibited increased microductility and plastic deformation over neat PLA during tensile test. No statistically significant changes in the tensile strength were found with HLCNC addition. The results provide some practical and fundamental insight of PLA/HLCNCs nanocomposites to be used for flexible packaging films. Future work to improve the dispersion of HLCNCs in the PLA matrix as well as in the CNC drying approach is suggested.

Keywords: Cellulose nanocrystals (CNCs); polylactic acid (PLA); mechanical properties; Raman spectroscopy; FTIR; XRD; TGA; modification

Publication Review Process: Informally Refereed (Peer-Reviewed)

File size: 760 kb(s)

Date posted: 09/13/2017

This publication is also viewable on Treesearch:  view
RITS Product ID: 86692
Current FPL Scientists associated with this product (listed alphabetically)
Agarwal, Umesh P.
Research Chemist
Sabo, Ronald C.
Research Materials Engineer
Stark, Nicole M.
Research Chemical Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »