Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Multivariate modeling of acoustomechanical response of 14-year-old suppressed loblolly pine (Pinus taeda) to variation in wood chemistry, microfibril angle and density

Source: Wood Science and Technology. 51(3): 475-492.

Author(s)Essien, Charles; Via, Brian K.; Cheng, Qingzheng; Gallagher, Thomas; McDonald, Timothy; Wang, Xiping; Eckhardt, Lori G.

Publication Year: 2017  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4714-1B

Abstract: The polymeric angle and concentration within the S2 layer of the softwood fiber cell wall are very critical for molecular and microscopic properties that influence strength, stiffness and acoustic velocity of wood at the macroscopic level. The main objective of this study was to elucidate the effect of cellulose, hemicellulose, lignin, microfibril angle and density on acoustic velocity and material mechanical properties of 14-year-old suppressed loblolly pine. Cellulose, hemicellulose and density are consistently the most important drivers of strength, stiffness and velocity. Cellulose and lignin are the highest and lowest contributor to velocity, respectively, with lignin acting as a sound wave dispersant, while cellulose is the most important conductor of sound wave at the molecular level, while hemicellulose acts as a special coupling agent between these components. The polymeric constituents are thus important drivers of sound wave propagation at the molecular level, while density played a subsequent role at the macroscale.

Keywords: Suppressed loblolly pine; microfibril angle; polymeric constituents; acoustic velocity; mechanical properties

Publication Review Process: Formally Refereed

File size: 580 kb(s)

Date posted: 06/28/2017

This publication is also viewable on Treesearch:  view
RITS Product ID: 84989
Current FPL Scientist associated with this product
Wang, Xiping
Research Forest Products Technologist
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »