Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films

Source: Cellulose. 24(4): 1745-1758

Author(s)Luo, Jeffrey; Chang, Huibin; Bakhtiary Davijani, Amir A.; Liu, H. Clive; Wang, Po-Hsiang; Moon, Robert J.; Kumar, Satish

Publication Year: 2017  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite suspensions increased with higher CNC loadings and with longer aging times. PAN-co-MAA/CNC films maintained a similar level of optical transparency even with up to 40 wt% CNC loading. The glass transition temperature (Tg) increased from 92 to 118°C, and the composites had higher thermal stability below 350°C compared to both neat PAN-co-MAA and neat CNC. The mechanical properties also increased with higher CNC loadings, elastic modulus increased from 2.2 to 3.7 GPa, tensile strength increased from 75 to 132 MPa, and the storage modulus increased from 3.9 to 10.5 GPa. Using the Kelly and Tyson model the interfacial shear strength between the PAN-co-MAA and CNC was calculated to be 27 MPa.

Keywords: Cellulose nanocrystal;  Nanocomposite; Polymer; Polyacrylonitrile

Publication Review Process: Formally Refereed

File size: 1,017 kb(s)

Date posted: 04/26/2017

This publication is also viewable on Treesearch:  view
RITS Product ID: 84586
Current FPL Scientist associated with this product
Moon, Robert J.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »