Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites

Source: ACS Sustainable Chem. Eng. 2017. 5: 1711−1720.

Author(s)Gupta, Anju; Simmons, William; Schueneman, Gregory T.; Hylton, Donald; Mintz, Eric A.

Publication Year: 2017  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: Improving the processability and physical properties of sustainable biobased polymers and biobased fillers is essential to preserve its biodegradability and make them suitable for different end user applications. Herein, we report the use of spray-dried lignin-coated cellulose nanocrystals (L-CNCs), a biobased filler, to modify the rheological and thermos-mechanical properties of poly(lactic acid) (PLA) composites. The lignin coating on CNCs not only improved the dispersion but also enhanced their interfacial interaction with the PLA matrix, resulting in a significant improvement in rheological and thermos-mechanical properties. The rheological percolation threshold concentration obtained by power law analysis for PLA/L-CNC composites was found to be 0.66 wt %, which is significantly lower than the reported values for PLA/CNC composites. Such a low rheological percolation concentration of L-CNCs can be attributed to excellent dispersion of L-CNCs in the PLA matrix. Addition of only 0.5 wt % L-CNCs to the PLA matrix resulted in an almost 60% improvement in storage modulus, relative to neat PLA, as measured by dynamic mechanical analysis. This improvement in mechanical properties can be attributed to a significant increase in the degree of crystallinity of the PLA matrix. Improvement in the storage modulus at higher loading of L-CNCs can be attributed to both high crystallinity and reinforcement by L-CNCs. We have readily prepared a fully biobased transparent and potentially biodegradable PLA film through film blowing by addition of just 0.3 wt % L-CNCs in the PLA matrix. This present study clearly demonstrates that L-CNCs can serve as excellent fillers for PLA for the development of fully biobased composites.

Keywords: Cellulose nanocrystal; Dispersion; Crystallinity; Mechanical properties; Film blowing; Percolation threshold

Publication Review Process: Formally Refereed

File size: 786 kb(s)

Date posted: 04/25/2017

This publication is also viewable on Treesearch:  view
RITS Product ID: 84583
Current FPL Scientist associated with this product
Schueneman, Gregory
Supervisory Research Materials Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »