Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Cellulose nanofiber-templated three-dimension TiO 2 hierarchical nanowire network for photoelectrochemical photoanode

Source: Nanotechnology

Author(s)Li, Zhaodong; Yao, Chunhua; Wang, Fei; Cai, Zhiyong; Wang, Xudong

Publication Year: 2014  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-1B

Abstract: Three dimensional (3D) nanostructures with extremely large porosity possess a great promise for the development of high-performance energy harvesting storage devices. In this paper, we developed a high-density 3D TiO2 fiber-nanorod (NR) heterostructure for photoelectrochemical (PEC) water splitting. The hierarchical structure was synthesized on a ZnO-coated cellulose nanofiber (CNF) template using atomic-layer deposition (ALD)-based thin film and NR growth procedures. The tubular structure evolution was in good agreement with the recently discovered vapor-phase Kirkendall effect in high-temperature ALD processes. The NR morphology was formed via the surface-reaction-limited pulsed chemical vapor deposition (SPCVD) mechanism. Under Xenon lamp illumination without and with an AM 1.5G filter or a UV cut off filter, the PEC efficiencies of a 3D TiO2 fiber-NR heterostructure were found to be 22-249% higher than those of the TiO2-ZnO bilayer tubular nanofibers and TiO2 nanotube networks that were synthesized as reference samples. Such a 3D TiO2 fiber-NR heterostructure offers a new route for a cellulose-based nanomanufacturing technique, which can be used for large-area, low-cost, and green fabrication of nanomaterials as well as their utilizations for efficient solar energy harvesting and conversion.

Keywords: atomic layer deposition; cellulose nanofiber; 3D structure

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 11/03/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 83626
Current FPL Scientist associated with this product
Cai, Zhiyong
Supervisory Research Materials Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »