Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites

Source: ACS Applied Materials & Interfaces 2016, 8. pp. 1458−1467

Author(s)Girouard, Natalie M.; Xu, Shanhong; Schueneman, Gregory T.; Shofner, Meisha L.; Meredith, J. Carson

Publication Year: 2016  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: The unequal reactivity of the two isocyanate groups in an isophorone diisocyante (IPDI) monomer was exploited to yield modified cellulose nanocrystals (CNCs) with both urethane and isocyanate functionality. The chemical functionality of the modified CNCs was verified with ATR-FTIR analysis and elemental analysis. The selectivity for the secondary isocyanate group using dibutyl tin dilaurate (DBTDL) as the reaction catalyst was confirmed with 13C NMR. The modified CNCs showed improvements in the onset of thermal degradation by 35 °C compared to the unmodified CNCs. Polyurethane composites based on IPDI and a trifunctional polyether alcohol were synthesized using unmodified (um-CNC) and modified CNCs (m-CNC). The degree of nanoparticle dispersion was qualitatively assessed with polarized optical microscopy. It was found that the modification step facilitated superior nanoparticle dispersion compared to the um-CNCs, which resulted in increases in the tensile strength and work of fracture of over 200% compared to the neat matrix without degradation of elongation at break.

Keywords: cellulose nanocrystal, nanoparticle modification, isocyanate chemistry, thermal stability, polyurethane, polymer nanocomposite, dispersion, mechanical properties

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 10/05/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 82688
Current FPL Scientist associated with this product
Schueneman, Gregory
Supervisory Research Materials Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »