Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: A solution thermodynamics definition of the fiber saturation point and the derivation of a wood-water phase (state) diagram

Source: Wood Science and Technology, Vol. 50(3). pp. 443-462.

Author(s)Zelinka, Samuel L.; Glass, Samuel V.; Jakes, Joseph E.; Stone, Donald S.

Publication Year: 2016  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-2B   FPL-4716-3A

Abstract: The fiber saturation point (FSP) is an important concept in wood– moisture relations that differentiates between the states of water in wood and has been discussed in the literature for over 100 years. Despite its importance and extensive study, the exact theoretical definition of the FSP and the operational definition (the correct way to measure the FSP) are still debated because different methods give a wide range of values. In this paper, a theoretical definition of the FSP is presented based on solution thermodynamics that treats the FSP as a phase boundary. This thermodynamic interpretation allows FSP to be calculated from the chemical potentials of bound and free water as a function of moisture content, assuming that they are both known. Treating FSP as a phase boundary naturally lends itself to the construction of a phase diagram of water in wood. A preliminary phase diagram is constructed with previously published data, and the phase diagram is extended to a state diagram by adding data on the glass transition temperatures of the wood components. The thermodynamic interpretation and resulting state diagram represent a potential framework for understanding how wood modification may affect wood–moisture relations.

Keywords: wood-moisture relations; fiber saturation point; thermodynamics; bound water; free water

Publication Review Process: Formally Refereed

File size: 604 kb(s)

Date posted: 10/04/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 82522
Current FPL Scientists associated with this product (listed alphabetically)
Glass, Samuel V.
Research Physical Scientist
Jakes, Joseph
Research Materials Engineer
Zelinka, Samuel L.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »