Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Highly transparent and toughened poly(methyl methacrylate) nanocomposite films containing networks of cellulose nanofibrils

Source: ACS Appl. Mater. Interfaces 2015, 7. pp. 25464-25472

Author(s)Dong, Hong; Sliozberg, Yelena R.; Snyder, James F.; Steele, Joshua; Chantawansri, Tanya L.; Orlicki, Joshua A.; Walck, Scott D.; Reiner, Richard S.; Rudie, Alan W.

Publication Year: 2015  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-2B

Abstract: Cellulose nanofibrils (CNFs) are a class of cellulosic nanomaterials with high aspect ratios that can be extracted from various natural sources. Their highly crystalline structures provide the nanofibrils with excellent mechanical and thermal properties. The main challenges of CNFs in nanocomposite applications are associated with their high hydrophilicity, which makes CNFs incompatible with hydrophobic polymers. In this study, highly transparent and toughened poly(methyl methacrylate) (PMMA) nanocomposite films were prepared using various percentages of CNFs covered with surface carboxylic acid groups (CNF-COOH). The surface groups make the CNFs interfacial interaction with PMMA favorable, which facilitate the homogeneous dispersion of the hydrophilic nanofibrils in the hydrophobic polymer and the formation of a percolated network of nanofibrils. The controlled dispersion results in high transparency of the nanocomposites. Mechanical analysis of the resulting films demonstrated that a low percentage loading of CNF-COOH worked as effective reinforcing agents, yielding more ductile and therefore tougher films than the neat PMMA film. Toughening mechanisms were investigated through coarse-grained simulations, where the results demonstrated that a favorable polymer-nanofibril interface together with percolation of the nanofibrils, both facilitated through hydrogen bonding interactions, contributed to the toughness improvement in these nanocomposites.

Keywords: cellulose nanofibrils, poly(methyl methacrylate), nanocomposites, interfacial interactions, mechanical properties, coarse-grained simulation

Publication Review Process: Formally Refereed

File size: 6,144 kb(s)

Date posted: 09/28/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 82090
Current FPL Scientist associated with this product
Rudie, Alan W.
Supervisory Research Chemist
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »