Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process

Source: Composites Part B: Engineering

Author(s)Barari, Bamdad; Ellingham, Thomas K.; Ghamhia, Issam I.; Pillai, Krishna M.; El-Hajjar, Rani; Turng, Lih-Sheng; Sabo, Ronald

Publication Year: 2016  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-1B

Abstract: Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised Liquid Composite Molding (LCM) process was used to make the nano-composites using a high bio-content ‘green’ epoxy resin. Formation of the freeze dried CNF preforms' porous network highly affects the mechanical properties of the composite, therefore mechanical testing was performed to characterize the effects of pore structure on global mechanical properties. The level of cure was investigated by comparing DSC results and the effect of curing on the composites was studied by tensile and dynamic mechanical analysis tests. The efficacy of silylation on the CNF preforms was analyzed with Water Contact Angle (WCA) measurements where the treatment led to hydrophobicity and hence better wettability by the non-polar resin. The causes of the failure in the composites were investigated using SEM analysis of the fractured surfaces. In general, silylation improved the infusion of resin into CNF preforms and resulted in better mechanical properties.

Keywords: A. Nano-structures; E. Thermosetting resin; B. Mechanical properties; B. Thermal properties; E. Resin transfer moulding (RTM)

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 09/26/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 81969
Current FPL Scientist associated with this product
Sabo, Ronald C.
Research Materials Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »