Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers

Source: Green Chemistry, Vol. 17(10)

Author(s)Wei, Liqing; Stark, Nicole M.; McDonald, Armando G.

Publication Year: 2015  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-1B

Abstract: In this study, α-cellulose fibers reinforced green biocomposites based on polyhydroxybutyrate (PHB) and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were prepared and characterized. The α-cellulose fibers were isolated from at-risk intermountain lodgepole pine wood by successive removal of extractives, lignin and hemicellulose. Grafting of PHB or PHBV onto cellulose was conducted using reactive extrusion with dicumyl peroxide free radical initiation at high temperature. It is postulated that the grafted copolymers at the interfaces of cellulose and the polymer matrix performed as an interfacial coupling agent. Grafting tended to interact with both the hydrophilic fibers and the hydrophobic PHB or PHBV matrix. The biocomposites were characterized by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA) and indicated good interfacial bonding and compatibility between the two phases. The mechanical properties of the biocomposites were improved by grafting due to improved stress transfer between the two interphases of the fiber/polymer matrix as compared to the blend control composite. The crystallinity of PHB, PHBV and cellulose in the biocomposite were reduced as determined by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC) analyses. This in situ reactive extrusion process offers an effective approach to improve the properties of biocomposite materials from sustainable resources.

Keywords: PHB, cellulose, reactive extrusion, grafting, OMA, DSX, SEM

Publication Review Process: Formally Refereed

File size: 4,096 kb(s)

Date posted: 09/22/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 81730
Current FPL Scientist associated with this product
Stark, Nicole M.
Research Chemical Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »