Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification

Source: Cellulose

Author(s)Peng, Shane X.; Chang, Huibin; Kumar, Satish; Moon, Robert J.; Youngblood, Jeffrey P.

Publication Year: 2016  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: Surface esterification methods of cellulose nanocrystals (CNC) using acid anhydrides, acid chlorides, acid catalyzed carboxylic acids, and 101-carbonyldiimidazole (CDI) activated carboxylic acids were evaluated with acetyl-, hexanoyl-, dodecanoyl-, oleoyl-, and methacryloyl-functionalization. Their grafting efficiency was investigated using Fouriertransform infrared spectroscopy and 13C solid state NMR spectroscopy. Acid anhydride and CDI were found to be the most applicable reagents to graft short and long chain aliphatic carbons, respectively. The preservation of structural morphology and crystallinity of grafted CNCs were confirmed using transmission electron microscopy and X-ray diffraction. The hydrophobicity of grafted CNCs was evaluated by dispersing them in organic solvents with different Hansen’s solubility parameters. The dispersibility of grafted CNCs in organic solvents was improved by using never-dried CNCs as source materials and keep CNCs wet in their washing solvents after grafting, thus increasing the solvency range to disperse CNCs.

Keywords: Cellulose nanocrystals, Esterification, Hydrophobicity, Hansen’s solubility parameters, Dispersibility,

Publication Review Process: Formally Refereed

File size: 11,264 kb(s)

Date posted: 09/07/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 80871
Current FPL Scientist associated with this product
Moon, Robert J.
Materials Research Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »