Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Moisture storage and transport properties of preservative treated and untreated southern pine wood

Source: Wood Material Science and Engineering

Author(s)Zelinka, Samuel L.; Glass, Samuel V.; Boardman, Charles R.; Derome, Dominique

Publication Year: 2016  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4716-1A

Abstract: Moisture storage and transport properties of southern pine (Pinus spp.) wood were measured for implementation into hygrothermal models. Specimens were untreated or pressure-treated with alkaline copper quaternary (ACQ) preservative. Moisture storage was characterized with sorption isotherms in the hygroscopic region (high capillary pressures) and documented with mercury intrusion porosimetry in the overhygroscopic region (low capillary pressures). The data were then combined into a single moisture retention curve as a function of capillary pressure. Moisture transport was evaluated from steady-state water vapor transmission and dynamic capillary water absorption experiments. These data were used to calculate the moisture permeability over the entire range of capillary pressures using the diffusivity approach of Carmeliet et al. Moisture storage and transport properties were similar for the untreated and ACQ-treated southern pine, except for the permeability of the treated wood which was lower in the radial direction. The data presented here can be used to improve the accuracy of hygrothermal and combined hygrothermal–corrosion modeling simulations.

Keywords: Southern pine, water vapor transmission, capillary absorption, sorption isotherm, mercury intrusion porosimetry, hygrothermal modeling

Publication Review Process: Formally Refereed

File size: 308 kb(s)

Date posted: 07/13/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 79533
Current FPL Scientists associated with this product (listed alphabetically)
Glass, Samuel V.
Research Physical Scientist
Zelinka, Samuel L.
Materials Research Engineer
 

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »