Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Assessing the Ability of Ground-Penetrating Radar to Detect Fungal Decay in Douglas-Fir Beams

Source: 25th Research Symposium, New Orleans (110-116). Columbus, OH: American Society for Nondestructive Testing, Inc. 7 p.

Author(s)Senalik, Christopher Adam; Wacker, James; Wang, Xiping; Jalinoos, F.

Publication Year: 2016  View PDF »

Category: Conference Proceedings
Associated Research Project(s):   FPL-4714-1B

Abstract: This paper describes the testing plan and current progress for assessing the efficacy of using ground-penetrating radar (GPR) to detect fungal decay within Douglas-fir beams. Initially, the beams were assessed using a variety of physical, mechanical, and nondestructive evaluation (NDE) test methods including micro-resistance drilling, Janka hardness, ultrasonic transmission, and GPR. After initial baseline assessment, beams were inoculated with brown rot fungus, Fomitopsis pinicola, and exposed to above-ground conditions approximately 25 miles (40 km) north of Gulfport, Mississippi, USA. Beam specimens will be removed from the exposure site at six-month intervals and scanned using GPR to detect and assess interior rot. After GPR scanning, micro-resistance drilling and ultrasonic transmission testing will be performed. Finally, the beams will be cut into 2-in. segments for Janka hardness testing, which will give the most definitive information regarding the spread of the brown rot fungus throughout the beams. The GPR scans will be compared to the hardness testing, micro-resistance drilling, and ultrasonic testing results to evaluate the ability of GPR to detect interior rot within the beams.

Keywords: Ground-penetrating radar, fungus, brown rot, Douglas-fir, sawn timber, glulam

Publication Review Process: Informally Refereed (Peer-Reviewed)

File size: 790 kb(s)

Date posted: 05/24/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 79254
Current FPL Scientists associated with this product (listed alphabetically)
Senalik, Christopher
Research General Engineer
Wacker, James P.
Research General Engineer
Wang, Xiping
Research Forest Products Technologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »