Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Probing crystallinity of never-dried wood cellulose with Raman spectroscopy

Source: Cellulose

Author(s)Agarwal, Umesh P.; Ralph, Sally A.; Reiner, Richard S.; Baez, Carlos

Publication Year: 2016  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-3B

Abstract: The structure of wood cell wall cellulose in its native state remains poorly understood, limiting the progress of research and development in numerous areas, including plant science, biofuels, and nanocellulose based materials. It is generally believed that cellulose in cell wall microfibrils has both crystalline and amorphous regions. However, there is evidence that appears to be contrary to this assumption. Here we show, using 1064-nm FT-Raman spectroscopy, that (1) compared to the crystalline state, cellulose in the never-dried native state is laterally aggregated but in a less-than crystalline state wherein internal chains are water-accessible, (2) hydroxymethyl groups (CH2OH) in cellulose exist not only in the tg conformation but also in the gt rotamer form, and (3) in native-state fibrils, low-frequency Raman bands due to cellulose crystal domains are absent, indicating the lack of crystallinity. Further evidence of the absence of crystallinity of the fibrils was the failure of the normal 64 % H2SO4 hydrolysis procedure to produce nanocellulose crystals from untreated wood. X-ray diffraction data obtained on wood, treated-wood, and wood-cellulose samples were consistent with the new finding and indicated that full-width-at-half-height of the X-ray diffractograms and lateral disorder in samples as measured by Raman were correlated (R2 = 0.95).

Keywords: Plant cell wall; Cellulose structure; Crystallinity; Microfibril; Nanocellulose; Raman spectroscopy; X-ray diffraction"; "Plant cell wall; Cellulose structure; Crystallinity; Microfibril; Nanocellulose; Raman spectroscopy; X-ray diffraction

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 01/07/2016

This publication is also viewable on Treesearch:  view
RITS Product ID: 78065
Current FPL Scientist associated with this product
Agarwal, Umesh P.
Research Chemist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »