Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Robotic and Multiaxial Testing for the Determination of the Constitutive Characterization of Composites

Source: In: Materials Challenges in Alternative and Renewable Energy II: Ceramic Transactions (eds G. Wicks, J. Simon, R. Zidan, R. Brigmon, G. Fischman, S. Arepalli, A. Norris and M. McCluer), John Wiley & Sons, Inc., Hoboken, NJ, USA. 14 p.

Author(s)Michopoulos, John; Iliopoulos, Athanasios; Hermanson, John

Publication Year: 2012  View PDF »

Category: Book
Associated Research Project(s):   FPL-4714-2B

Abstract: As wind energy production drives the manufacturing of wind turbine blades, the utilization of glass and carbon fiber composites as a material of choice continuously increases. Consequently, the needs for accurate structural design and material qualification and certification as well as the needs for aging predictions further underline the need for accurate constitutive characterization of composites. In the present paper we describe an outline of a recently developed methodology that utilizes mutliaxial robotically controlled testing combined with design optimization for the automated constitutive characterization of composite materials for both the linear and non-linear regimes. Our approach is based on the generation of experimental data originating from custom-developed mechatronic material testing systems that can expose specimens to multidimensional loading paths and can automate the acquisition of data representing the excitation and response behavior of the specimens involved. Material characterization is achieved by minimizing the difference between experimentally measured and analytically computed system responses as described by strain fields and surface strain energy densities. Small and finite strain formulations based on strain energy density decompositions are developed and utilized for determining the constitutive behavior of composite materials. Examples based on actual data demonstrate the successful application of design optimization for constitutive characterization. Validation experiments and their comparisons to theoretical predictions demonstrate the power of this approach.

Keywords: hexapod; 6 degree-of-freedom; mechatronics; data-driven methodology; automation

Publication Review Process: Formally Refereed

File size: 6,435 kb(s)

Date posted: 09/29/2015

This publication is also viewable on Treesearch:  view
RITS Product ID: 75799
Current FPL Scientist associated with this product
Hermanson, John C.
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »