Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Preliminary Validation of Composite Material Constitutive Characterization

Source: In: Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 12-15, 2012, Chicago, IL, IDETC/CIE 2012; 10 p.

Author(s)Michopoulos, John G.; lliopoulos, Athanasios; Hermanson, John C.; Orifici, Adrian C.; Thomson, Rodney S.

Publication Year: 2012  View PDF »

Category: Conference Proceedings
Associated Research Project(s):   FPL-4714-2B

Abstract: This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by the employment of energy based design optimization principles to solve the inverse problem that determines the unknown parameters of the constitutive model under consideration. In order to validate identified constitutive models, finite element simulations using these models were exercised for three distinct specimen geometries. The first geometry was that of the characterization coupon under multiaxial loading. The second was that of open hole specimens in tension. The final one was that of stiffened panel substructures under tension. Actual experimental data from testing all these specimens were collected by the use of load cells, full field displacement and strain methods and strain gauges. Finally, the theoretical predictions were compared with the experimental ones in terms of strain field distributions and load-strain responses. The comparisons demonstrated excellent predictability of the determined constitutive responses with the predictions always within the error band of the methods used to collect the experimental data.

Keywords: multiaxial testing; open-hole specimen; stiffened panel substructure; data-driven methodology

Publication Review Process: Formally Refereed

File size: 6,859 kb(s)

Date posted: 09/29/2015

This publication is also viewable on Treesearch:  view
RITS Product ID: 75795
Current FPL Scientist associated with this product
Hermanson, John C.
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »