Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization

Source: Journal of Polymers and the Environment

Author(s)Wang, Wangxia; Sabo, Ronald C.; Mozuch, Michael D.; Kersten, Phil; Zhu, J. Y.; Jin, Yongcan

Publication Year: 2015  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-2B  FPL-4709-2B  FPL-4712-3B

Abstract: A GH5 hyperthermostable endoglucanase (Ph-GH5) from the archaeon Pyrococcus horikoshii and a commercial endoglucanase (FR) were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNF) and subsequently to CNF films. TEM imaging indicated that Ph-GH5 produced longer and more entangled CNF than FR with the same number of microfluidization passes. Physical and mechanical properties of CNF films were characterized. Optical opacity of CNF films from FR (10 mg/g) at 40 passes through the microfluidizer can be as low as 3.7 %, compared with 18.2 % from untreated BEP at the same number of passes. CNF films exhibited similar thermal stability with untreated BEP. Highest specific modulus of CNF films was also obtained from FR (10 mg/g), reaching 56 MNm/kg, approximately 271 % of the CNF films from untreated BEP at 40 passes through the microfluidizer. CNF film from Ph-GH5 (1 mg/g) at 40 passes provided the highest specific maximum tensile strength at 120 kNm/kg.

Publication Review Process: Formally Refereed

File size: 1,611 kb(s)

Date posted: 09/25/2015

This publication is also viewable on Treesearch:  view
RITS Product ID: 75517
Current FPL Scientists associated with this product (listed alphabetically)
Kersten, Philip J.
Research Microbiologist
Sabo, Ronald C.
Research Materials Engineer
Zhu, JunYong
Research General Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »