Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Stable Low-Voltage Operation Top-Gate Organic Field-Effect Transistors on Cellulose Nanocrystal Substrates

Source: ACS Applied Materials & Interfaces

Author(s)Wang, Cheng-Yin; Fuentes-Hernandez, Canek; Liu, Jen-Chieh; Dindar, Amir; Choi, Sangmoo; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

Publication Year: 2015  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: We report on the performance and the characterization of top-gate organic field-effect transistors (OFETs), comprising a bilayer gate dielectric of CYTOP/ Al2O3 and a solution-processed semiconductor layer made of a blend of TIPS-pentacene:PTAA, fabricated on recyclable cellulose nanocrystal−glycerol (CNC/glycerol) substrates. These OFETs exhibit low operating voltage, low threshold voltage, an average field-effect mobility of 0.11 cm2/(V s), and good shelf and operational stability in ambient conditions. To improve the operational stability in ambient a passivation layer of Al2O3 is grown by atomic layer deposition (ALD) directly onto the CNC/glycerol substrates. This layer protects the organic semiconductor layer from moisture and other chemicals that can either permeate through or diffuse out of the substrate.

Keywords: organic field-effect transistor; top-gate geometry; cellulose; low-voltage; ambient stability

Publication Review Process: Formally Refereed

File size: 993 kb(s)

Date posted: 08/13/2015

This publication is also viewable on Treesearch:  view
RITS Product ID: 73770
Current FPL Scientist associated with this product
Moon, Robert J.
Materials Research Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »