Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements

Source: Polymer, Volume 56, 2015; pp. 464-475.

Author(s)Iyer, Krishnan A.; Schueneman, Gregory T.; Torkelson, John M.

Publication Year: 2015  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: Cellulose nanocrystals (CNCs), a class of renewable bionanomaterials with excellent mechanical properties, have gained major interest as filler for polymers. However, challenges associated with effective CNC dispersion have hindered the production of composites with desired property enhancements. Here, composites of polypropylene (PP) and low density polyethylene (LDPE) with 5e10 wt% unmodified CNC are produced for the first time via a solventless process. In particular, we employ solid-state shear pulverization (SSSP). Optical and electron microscopy reveals excellent CNC dispersion with strongly suppressed degradation relative to composites made by melt mixing. Effective dispersion leads to major increases in Young's modulus, including a 69% increase in 90/10 wt% LDPE/CNC composites relative to neat LDPE, the highest modulus enhancement ever reported for polyolefin/CNC composites. The composites also exhibit superior creep performance with modest increment in yield strength compared to neat polymer. The LDPE/CNC composites retain elongation at break values that are equal to that of neat polymer while a decrease is observed with PP/CNC composites. The CNC thermal degradation temperature in air is close to that of PP melt processing conditions. We hypothesize that during melt-processing CNCs undergo preferential thermo-oxidative degradation in LDPE and simultaneous degradation in PP. Thus, CNC incorporation results in impaired thermal stability in LDPE and, especially, PP. Care must be taken in selecting the post-SSSP melt processing temperature and residence time in order to suppress degradation. Taking that into account, this study has produced polyolefin/CNC composites with superior dispersion and property enhancements and shown that CNC is an attractive filler for green polymer biocomposites.

Keywords: Cellulose nanocrystals; Composites; Polyolefins

Publication Review Process: Formally Refereed

File size: 1,911 kb(s)

Date posted: 04/01/2015

This publication is also viewable on Treesearch:  view
RITS Product ID: 72546
Current FPL Scientist associated with this product
Schueneman, Gregory
Supervisory Research Materials Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »