Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Effects of Crystal Orientation on Cellulose Nanocrystals−Cellulose Acetate Nanocomposite Fibers Prepared by Dry Spinning

Source: Biomacromolecules, Volume 15, 2014; pp. 3827-3835.

Author(s)Chen, Si; Schueneman, Greg; Pipes, R. Byron; Youngblood, Jeffrey; Moon, Robert J.

Publication Year: 2014  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: This work presents the development of dry spun cellulose acetate (CA) fibers using cellulose nanocrystals (CNCs) as reinforcements. Increasing amounts of CNCs were dispersed into CA fibers in efforts to improve the tensile strength and elastic modulus of the fiber. A systematic characterization of dispersion of CNCs in the polymer fiber and their effect on the nanocomposites’ mechanical properties is described. The birefringence, thermal properties, and degree of CNC orientation of the fibers are discussed. 2D X-ray diffraction was used to quantify the degree of CNC alignment within the fibers. It is shown that the CNC alignment directly correlates to the mechanical properties of the composite. Maximum improvements of 137% in tensile strength and 637% in elastic modulus were achieved. Empirical micromechanical models Halpin−Tsai equation and an orientation modified Cox model were used to predict the fiber performance and compared with experimental results.

Keywords: Cellulose nanocrystals; cellulose acetate fibers; dry spinning; alignment; mechanical properties; micromechanical modeling

Publication Review Process: Formally Refereed

File size: 7,430 kb(s)

Date posted: 11/13/2014

This publication is also viewable on Treesearch:  view
RITS Product ID: 71566
Current FPL Scientists associated with this product (listed alphabetically)
Moon, Robert J.
Materials Research Engineer
Schueneman, Gregory
Supervisory Research Materials Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »