Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films

Source: Cellulose Volume 21, 2014; pp. 347-356.

Author(s)Baez, Carlos; Considine, John; Rowlands, Robert

Publication Year: 2014  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-2B

Abstract: Nanofibrillated cellulose (NFC) is a renewable and biodegradable fibril that possesses high strength and stiffness resulting from high level hydrogen bonding. Films made from NFC shrink and distort as they transition from a wet state (20 wt% solids) to a state of moisture equilibrium (90 wt% solids at 50 % RH, 23 °C). Material distortions are driven by development of moisture gradients within the fibril network and effectively reduce mechanical performance. For this study, NFC was extracted from softwood holocellulose by first employing a chemical pretreatment [(2,2,6,6tetramethylpiperidin-1-yl)oxyl catalyzed oxidation] followed by mechanical fibrillation using ultrasound energy. To assess the problem of film distortion, neat NFC films were dried at 50 % RH, 23 °C under one of the following three restraint conditions: fully restrained, partially restrained, and uniaxially drawn. The influence of restraint condition on the resulting physical and mechanical properties was evaluated. Raman and X-ray results showed that fibrils in the uniaxially drawn specimens tended to align with the drawing axis, whereas no in-plane orientation effects were observed for the fully or partially restrained specimens. Fully restrained specimens had a respective strength and stiffness of 222 MPa and 14 GPa in every (in-plane) direction. However, samples that were wet-drawn to a 30 % strain level had a respective strength and stiffness of 474 MPa and 46 GPa in the direction of draw. Mechanical properties for axially drawn specimens had both fibril alignment and fibril straightening contributions.

Keywords: nanofibrillated cellulose, mocrofibrillated cellulose, nanocellulose restraint drying, fiber orientation, cellulose nanofibers

Publication Review Process: Informally Refereed (Peer-Reviewed)

File size: 827 kb(s)

Date posted: 03/25/2014

This publication is also viewable on Treesearch:  view
RITS Product ID: 67333
Current FPL Scientist associated with this product
Considine, John M.
Materials Research Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »