Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities

Source: Cellulose, Volume 20, 2013; pp.1937-1946.

Author(s)Zhang, Chao; Zhuang, Xinshu; Wang, Zhao Jiang; Matt, Fred; St. John, Franz; Zhu, J.Y.

Publication Year: 2013  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-1B   FPL-4712-3B

Abstract: Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose saccharification. Furthermore, xylan removal by pretreatment and xylanase are indifferent to enzymatic cellulose saccharification. However, more enzymatic xylose and glucose yields were obtained for a substrate with lower xylan content after a severer pretreatment at the same xylanase dosage. The effectiveness of xylanase at increased dosages depended on the substrates structure or accessibility. High xylanase dosages were more effective on well pretreated substrates than on under-pretreated substrates with high xylan content. The application sequence of xylanase and cellulase affected cellulose saccharification. This effect varied with substrate accessibility, perhaps due to competition between xylanase and cellulase binding to the substrate.

Keywords: Xylanase supplementation; Enzymatic hydrolysis/saccharification; Poplar/hard wood; Pretreatment severity; Substrate accessibility

Publication Review Process: Formally Refereed

File size: 805 kb(s)

Date posted: 10/22/2013

This publication is also viewable on Treesearch:  view
RITS Product ID: 66485
Current FPL Scientists associated with this product (listed alphabetically)
St. Johns, Franz
Research Microbiologist
Zhu, JunYong
Research General Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »