Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films

Source: Biomacromolecules 2013, Volume 14, 2013; pp. 2900-2908.

Author(s)Diaz, Jairo A.; Wu, Xiawa; Martini, Ashlie; Youngblood, Jeffrey P.; Moon, Robert J.

Publication Year: 2013  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: The coefficient of thermal expansion (CTE) of cellulose nanocrystal (CNC) films was characterized using novel experimental techniques complemented by molecular simulations. The characteristic birefringence exhibited by CNC films was utilized to calculate the in-plane CTE of selforganized and shear-oriented self-standing CNC films from room temperature to 100 °C using polarized light image correlation. CNC alignment was estimated via Hermans order parameter (S) from 2D X-ray diffraction measurements. We found that films with no preferential CNC orientation through the thickness (S: ~­0.0) exhibited an isotropic CTE (~­25 ppm/K). In contrast, films with aligned CNC orientations (S: ~0.4 to 0.8) had an anisotropic CTE response: For the highest CNC alignment (S: 0.8), the CTE parallel to CNC alignment was ~­9 ppm/K, while that perpendicular to CNC alignment was ~158 ppm/K. CNC film thermal expansion was proposed to be due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intracrystal responses to heating were explored using molecular dynamics simulations.

Keywords: cellulose nanocrystals; Herman's Order parameter; Coefficient Thermal Expansion; digital image correlation

Publication Review Process: Formally Refereed

File size: 4,321 kb(s)

Date posted: 08/26/2013

This publication is also viewable on Treesearch:  view
RITS Product ID: 64943
Current FPL Scientist associated with this product
Moon, Robert J.
Materials Research Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »