Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

Source: Cellulose, Volume 20, 2013; pp. 43-55.

Author(s)Wu, Xiawa; Moon, Robert J.; Martini, Ashlie

Publication Year: 2013  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-3B

Abstract: The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive force field was used that explicitly describes hydrogen bond, coulombic and van der Waals interactions, allowing each contribution to the inter-and intramolecular forces to be analyzed as a function of crystallographic direction. The uniform deformation studies showed that the forces dominating elastic behavior differed in the axial and transverse directions because of the relationship between the direction of the applied strain and the hydrogen bonding planes. Simulations of nanoscale indentation were then introduced to model the interaction between a hemispherical indenter with the (110) surface of a cellulose Iß rod. The role of indenter size, loading force and indentation speed on the transverse elastic modulus was studied and, for optimized parameters, the results found to be in good agreement with experimentally-measured transverse elastic modulus for individual cellulose crystals.

Keywords: elastic modulus, Nanoindentation, cellulose, molecular dynamics

Publication Review Process: Formally Refereed

File size: 1,261 kb(s)

Date posted: 05/30/2013

This publication is also viewable on Treesearch:  view
RITS Product ID: 64024
Current FPL Scientist associated with this product
Moon, Robert J.
Materials Research Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »