Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: pH-Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses

Source: ChemSusChem Volume 6, 2013; pp. 919- 927.

Author(s)Lou, Hongming; Zhu, J.Y.; Lan, Tian Qing; Lai, Huranran; Qiu, Xueqing

Publication Year: 2013  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-1B

Abstract: We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5–6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). The adsorption isotherms of a commercial Trichoderma reesi cellulose cocktail (CTec2) produced by these lignin residues at 50 8C were measured in the pH range of 4.5–6.0. The zeta potentials of these lignin samples were also measured. We discovered that an elevated pH significantly increased the lignin surface charge (negative), which causes lignin to become more hydrophilic and reduces its coordination affinity to cellulase and, consequently, the nonspecific binding of cellulase. The decreased nonspecific cellulase binding to lignin is also attributed to enhanced electrostatic interactions at elevated pH through the increased negative charges of cellulase enzymes with low pI. The results validate the hypothesis that the increases in enzymatic saccharification efficiencies at elevated pH for different pretreated lignocelluloses are solely the result of decreased nonspecific cellulase binding to lignin. This study contradicts the well-established concept that the optimal pH is 4.8–5.0 for enzymatic hydrolysis using Trichoderma reesi cellulose, which is widely accepted and exclusively practiced in numerous laboratories throughout the world. Because an elevated pH can be easily implemented commercially without capital cost and with minimal operating cost, this study has both scientific importance and practical significance.

Keywords: nonspecific/nonproductive cellulase binding/adsorption; lignin sulfonation; enzymatic hydrolysis/saccharification; lignocelluloses bioconversion; surface charge; hydrophobic and electrostatic interaction.

Publication Review Process: Formally Refereed

File size: 350 kb(s)

Date posted: 05/29/2013

This publication is also viewable on Treesearch:  view
RITS Product ID: 64021
Current FPL Scientist associated with this product
Zhu, JunYong
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »