Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Fractionation of Forest Residues of Douglas-fir for Fermentable Sugar Production by SPORL Pretreatment

Source: Bioenerg. Res. (2012) Volume 5, pp. 978-988; 2012

Author(s)Zhang, Chao; Zhu, J.Y.; Gleisner, Roland; Sessions, John

Publication Year: 2012  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-1B

Abstract: Douglas-fir (Pseudotsuga menziesii) forest residues were physically fractionated through sieving. The bark and wood were separated for large-sized fractions (>12.7 mm), and their contents were determined. The chemical compositions of the large fractions were calculated based on the contents and chemical compositions of the bark and wood. The chemical compositions of the fine fractions were analyzed. The bark and wood content in the fine fractions was calculated based on the measured glucan and lignin contents in each fraction. It was found that fractionation by particle/chip size can effectively fractionate bark and wood and therefore lignin from carbohydrates. The large-sized fractions (>12.7 mm) represent approximately 60 % of the collected forest residues but only contain approximately 37 % of the total bark and 35 % of the total ash, or a selectivity over bark and ash of 1.6 and 1.7, respectively. Pretreatment of forest residues by sulfite pretreatment to overcome recalcitrance of lignocelluloses and subsequent enzymatic hydrolysis revealed the presence of 14.3 % bark can reduce substrate enzymatic digestibilities (SED) 16 % compared with that from a bark-free sample. The SED of a bark is 41 % compared with 73 % for wood when pretreated under the same conditions. Separating pretreatment of bark from wood is beneficial for producing a more enzymatically digestible substrate. The results from the present study could have significant implications for harvesting forest residues.

Keywords: Forest Residues; Size fractionation/sieving; Bark; Pretreatment; Enzymatic hydrolysis/saccharification

Publication Review Process: Formally Refereed

File size: 492 kb(s)

Date posted: 01/18/2013

This publication is also viewable on Treesearch:  view
RITS Product ID: 63067
Current FPL Scientist associated with this product
Zhu, JunYong
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »