Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Heat-induced chemical and color changes of extractive-free Black Locust (Rosinia Pseudoacacia) wood

Source: BioResources Volume 7, Number 2, 2236-2248; 2012

Author(s)Chen, Yao; Gao, Jianmin; Fan, Yongming; Tshabalala, Mandla A.; Stark, Nicole M.

Publication Year: 2012  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-2A  FPL-4707-2A

Abstract: To investigate chemical and color changes of the polymeric constituents of black locust (Robinia pseudoacacia) wood during heat treatment, extractive-free wood flour was conditioned to 30% initial moisture content (MC) and heated for 24 h at 120 °C in either an oxygen or nitrogen atmosphere. The color change was measured using the CIELAB color system. Chemical changes of the wood components were determined by means of solid state cross-polarization/magic angle spinning 13C-nuclear magnetic resonance (CPMAS-13C-NMR), Fourier transform infrared (FTIR), diffuse reflectance UV-Vis (DRUV) spectroscopy, and elemental (CHN) analysis. The results showed that lightness (L*) decreased, while chromaticity indexes (a* and b*) and chroma (C*) increased after heat treatment. There was greater color difference (ΔE*in the samples heated in the presence of oxygen compared to nitrogen. CHN analysis showed an increase in hydrogen and oxygen and a decrease in carbon content. NMR spectra confirmed the cleavage of the ß-O-4 structure in the lignin, resulting in a decrease in etherified lignin units and an increase in phenolic structures. DRUV and FTIR spectra confirmed the formation of extensive conjugated structures, such as unsaturated ketones and quinones due to the cleavage of the lignin units. Formation of quinones can be attributed to heat treatment in the presence of oxygen.

Keywords: Heat treatment; Wood; Chemical changes; Color: 13C-NMR; FTIR-ATR; DRUV

Publication Review Process: Formally Refereed

File size: 376 kb(s)

Date posted: 09/27/2012

This publication is also viewable on Treesearch:  view
RITS Product ID: 61827
Current FPL Scientists associated with this product (listed alphabetically)
Stark, Nicole M.
Research Chemical Engineer
Tshabalala, Mandla A.
Research Chemist
 

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »